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Optical Bragg re¯ ection from the TGBA phase
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Dipartimento di Fisica del Politecnico di Torino and Istituto Nazionale di Fisica

della Materia, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy;
e-mail: hubert@polito.it

(Received 19 December 1998; accepted 19 March 1999 )

We have studied theoretically the re¯ ection band properties of the twist grain boundary
A phase (TGBA). A 4 Ö 4 matrix approach for the electromagnetic wave propagation is used.
At normal incidence, simple analytical expressions are found, while at oblique incidence
numerical methods have to be used since no analytical solution is available. The chart of
stability of the propagating waves and the re¯ ection spectra are given and discussed. No
evidence of the incommensurability properties of the TGBA phases can be found optically.
However, the analysis of the output polarization within the Bragg re¯ ection band, on thick
enough samples, allows us to determine the physical parameters characterizing the TGBA
phase. In particular conditions, we can get the rotation DQ between two homogeneous slabs
and the total optical phase w of one slab. When DQ and w go to zero, the optical properties
of the TGBA phase become identical to those of the cholesteric phase. The essential di� erence
appears when DQ and w are increased; an in® nite number of re¯ ection bands forms each
Bragg re¯ ection order, due to the periodicity of the TGBA parameters.

1. Introduction

Helical structures are traditional entities in liquid
crystal (LC) materials. Ordinary LC phases like the chiral
smectic C phase and the cholesteric phase are wisely
used for theoretical and applied studies. During the
last decade, new structures called twist grain boundary
(TGB) phases havebeen discovered in chiral compounds.
Actually, one can identify three di� erent phases which
have been named TGBA [1], TGBC [2] and TGBC*
[3]. The ® rst two are periodic in one direction, while
the last one is periodic in two orthogonal directions and
will not be considered in this paper. The structural
properties of TGB phases were ® rst formulated in the
theoretical work of Renn and Lubensky (RL) [4, 5]
based on the formal analogy introduced by de Gennes
[6] between the smectic phase in LCs and the Abrikosov
phase in type II superconductors. Figure 1 shows the

Figure 1. General view of the TGB structure. The smectic slabsstructureproposed by Renn andLubensky for the TGBA
of thickness lb are discretely rotated by an angle DQ alongphase which is con® rmed by many experiments [7± 9]. the z-direction and between each slab (grain boundary) a

Two successive smectic slabs of thickness lb are discretely grating of screw dislocations spaced at a regular distance
ld takes place.rotated at an angle DQ along a direction parallel to

the smectic planes, say z. The interface between each
slab (grain boundary) is constituted of a grating of to the helix direction [2]. The induced biaxiality is
screw dislocations spaced at a regular distance ld . generally negligible and the TGBC structure is then
These dislocations are not observable optically and the optically equivalent to that of the TGBA phase.
TGBA phase shows then a helical superstructure in the The information which is provided by the Bragg
z-direction which can be characterized by its re¯ ection re¯ ection band may be analysed, the chart of stability
spectra. For the TGBC phase, it has recently been shown allowing us to perform a deep analysis of the periodic

medium. Up to now, only a few studies have beenthat the optic axis of the smectic slab is orthogonal
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1380 P. Hubert

performed on the optical properties of the TGB phases onto Ua which give the subspaces of the forward and
backward propagating waves, respectively [14]. We[10], even though they are similar to those of Reusch’s

piles [11] or of SÏ olc ® lters [12]. The aim of this work have
is to study these properties in order to ® nd the structural

tr = (P
+

Ua PÕ
1

+
)Õ

1

parameters characterizing the TGBA phase. To this
purpose, we ® rst review the general theory of electro- and
magnetic wave propagation based on the 4 Ö 4 matrix

rf= (P
Õ

UÕ
1

a PÕ
1

+
)[(P

Õ
UÕ

1
a PÕ

1

Õ
)]Õ

1 . (4)approach (§2). An analytical description of the wave
propagation in TGBA phases at normal incidence is The electromagnetic wave within the medium can

propagate or be evanescent. These two electromagneticthen developed (§3). Finally, before giving concluding
remarks (§5), we discuss the chart of stability which is states can be referred to as the stable and unstable

solution, respectively. Further, the chart of stabilityobtained for the most general case of oblique incidence
(§4). which gives the instability properties as a function of

the parameters of the system is found by analysing the
2. Theory transfer matrix of the periodic structure, Ua . To that

Let us consider here a geometry where the helix axis purpose, an analysis on the eigenwaves of the equivalent
of the superstructure is orthogonal to the boundaries of Berreman-matrix [15] or a resolution of the Maxwell
the sample, giving rise to a strati® ed medium. In this equations according to the Bloch± Floquet theorem [16]
geometry, as is well known, the electromagnetic wave can be made. However, in our case the stable regions of
propagation can be solved using a standard 4 Ö 4 matrix the system are found by analysing the properties of the
approach obtained by a suitable rearrangement of the four complex eigenvalues rj ( j = 1, ¼ , 4), of the transfer
Maxwell equations introduced by Berreman [13] for matrix Ua . These eigenvalues are obtained analytically
LC optics. For a monochromatic wave of wavelength l and numerically for normal incidence and oblique
propagating along the z-direction, we only have to con- incidence, respectively. If |rj |>1 or |rj |<1 the wave is an
sider the z-dependence of the ® eld components, because increasing or a decreasing evanescent wave, respectively,
of the complete translational symmetry properties along and for |rj | = 1 the wave is propagating. If two of the
all thedirections orthogonal to the z-axis. Thepropagation four proper waves do not propagate, a selective re¯ ection
equation to the b-vector, b = (Ex , Hy , Ey , Õ Hx)t , takes place (Bragg re¯ ection), while with four non-
(t for transpose) containing the components of the propagating waves, a total re¯ ection occurs which does
electromagnetic ® eld, is then written as not ful® ll the classical Bragg condition.

3. Normal incidence: secular equation and chart of
qb

qz
= ik0 Bb (1)

stability

In a ® rst approximation, within the strati® ed medium,where B is the 4 Ö 4 Berreman matrix and k0 = 2p/l. In
the grain boundaries are not optically observable andthe case of a homogeneous medium, the Berreman
their thickness is neglected. Within this approximation,matrix is z-independent and the solution of equation (1)
the same contains a number N of uniaxial slabs of thick-is b(z)= U

b
(z Õ z0 )b(z0 ), where U

b
(z Õ z0 ) is the b transfer

ness lb , which are stacked successively with a rotationmatrix over the thickness (z Õ z0 ) and is written as
DQ between each of them, the local optical axis being

U
b
(z Õ z0 )= exp[ik0 B (z Õ z0 )]. (2) parallel to the boundary planes. Further, we consider a

plane wave incident on this set of N homogeneous layersIt is usually convenient to work with the so-called
separated by N +1 planes at z = zn (n = 0, 1, ¼ , N ),a-vectors, which are made up of the amplitudes of four
with the aim of ® nding out the analytic expression ofpolarized plane waves propagating in the medium. They
the proper wave vector, corresponding to the eigenwave,correspond to the ordinary and extraordinary waves
within the periodic medium. We write the a-vectors atwhich propagate forwards and backwards. They are
the interface between two successive layers, (n Õ 1) andde® ned such that
(n), as shown in ® gure 2, as

b = Ta (3)
a(z Õn )= (ie , re , io , ro )t , a(z+n )= (te , r ¾e , to , r ¾o )t (5)where T is the 4 Ö 4 matrix whose elements t ij are

the it h component of the Berreman eigen vector bj . where i, r, t correspond to the incident, re¯ ected and
transmitted wave of the n plane, r ¾ corresponds to theThe propagation matrix for the a-vectors is then

Ua
= TÕ

1 U
b
T. re¯ ected wave of the n+1 plane, and the indices e, o

correspond to the extraordinary and ordinary wave,The transmittance tr and the re¯ ectance rf are
obtained by applying the projection matrices P

+
, P

Õ
, respectively. The continuity of the tangential components

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
0
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1381Optical Bragg re¯ ection from T GBA phase

the T-matrix allows us easily to obtain the inverse of
the matrix Tn and then the matrix Rn,n

Õ
1 = TÕ

1
n Tn

Õ
1

becomes

Rn,n
Õ

1

= C cos DQ 0 A sin DQ B sin DQ

0 cos DQ B sin DQ A sin DQ

Õ A sin DQ B sin DQ cos DQ 0

B sin DQ Õ A sin DQ 0 cos DQ D
(10)Figure 2. Incident, re¯ ected and transmitted wave in the

strati ® ed medium.
with

of the vectors E and H is expressed by the relation A =
1

2 CAne

noB1 /2

+Ano

neB1 /2Db(z+n ) = b(z Õn ) and with equation (3) we obtain

anda(z+n )= TÕ
1

n Tn
Õ

1 a(z Õn ) (6)

where Tn
Õ

1 , Tn are the T-matrix of the layers (n Õ 1)
B =

1

2 CAne

noB1 /2

Õ Ano

neB1 /2D .and (n), respectively. From equations (2) and (6), the
transfer matrix for the a-vectors between the planes

Since the rotation DQ between two successive slabs andz = z+n
Õ

1 and z = z+n [corresponding to the (n Õ 1)-layer
the slab thickness lb are constants, all the matrices Unand its second interface] is written as
are identical to U1 = R1 , 0 P0 . Therefore, the propagating

Un
Õ

1 = Rn,n
Õ

1Pn
Õ

1 (7) matrix Ua for the whole sample of thickness d con® ned
between two semi-in® nite isotropic media (as for instancewith Rn,n

Õ
1 = TÕ

1
n Tn

Õ
1 and where Pn

Õ
1 is a diagonal

glass) istransfer matrix for the homogeneous slab (n Õ 1). At
normal incidence, very simple expressions for Tn and Pn Ua

= TÕ
1

g P0 (U1 )NÕ
1Tg (11)

are found as follows:
where Tg is the T-matrix for the isotropic media. As
equation (11) shows, the optical properties of the whole
sample are governed by the properties of the U1 matrix.
The four eigenvalues of Ua are rj = exp(ikj lb ), where kjPn = Cexp(iwe ) 0 0 0

0 exp(Õ iwe ) 0 0

0 0 exp(iwo ) 0

0 0 0 exp(Õ iwo )
D plays the role of a wave vector. Then, if r is one of {rj },

we easily prove that 1/r is also an eigen value of U1 .
With y = r+1/r, the secular equation of U1 is written
as(8)

g(y)= y2 +ay+b (12)and

where a = Õ 2 cos DQ(cos we +cos wo ) and

b =2 cos2 DQ(1+cos we cos wo )+2 cos we cos wo

Tn =C
cos Qn

Ó ne

cos Qn

Ó ne

Õ
sin Qn

Ó no

Õ
sin Qn

Ó no

cos Qn Ó ne Õ cos Qn Ó ne Õ sin Qn Ó no sin Qn Ó no

sin Qn

Ó ne

sin Qn

Ó ne

cos Qn

Ó no

cos Qn

Ó no

sin Qn Ó ne Õ sin Qn Ó ne cos Qn Ó no Õ cos Qn Ó no

D Õ Ane

no

+
no

neB sin2 DQ sin we sin wo Õ 2.

The four solutions of equation (12) together with
y = r+1/r are simple and can be written as

(9)
r1 , 2

Ô
=

y1 , 2 Ô (y2
1 , 2 Õ 4)1 /2

2
with y1 , 2 =

Õ a Ô (a2 Õ 4b)1 /2

2
.

where Qn = (n Õ 1)DQ, we = k0 ne lb , wo = k0 no lb , and ne

and no are the local extraordinary andordinary refractive (13)indices of the uniaxial medium, respectively. As expected,
Pn is independentof n. For lossless media, theorthogonality From equation (13) it is easy to ® nd the proper wave

vectors kj . As we see from above, a real k correspondsrelations taken from ref. [17] between the columns of
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1382 P. Hubert

to a propagating wave (stable solution) and a complex no =1.5 and ne = 1.66. This interference pattern is also
or purely imaginary k to an evanescent wave (unstable found periodically along the w-direction due to the
solution). In ® gure 3, we give the chart of stability as de® nition of w in modulus 2p [18].
a function of DQ and w, which is the mean phase of The third re¯ ection band D 3 appearing in the chart of
one homogeneous slab, w = (we +wo )/2, (with ne = 3 and stability (see ® gure 3) is independent of the polarization
no = 2). The loci of the white, grey and black points state as shown in ® gure 4. It occurs around w =p, and
correspond to the cases where there are four, two and is evidently due to the fact that the waves re¯ ected by
zero propagating waves, respectively. A thick enough any pair of boundary planes add coherently. It can also
sample gives total re¯ ection within the black regions and correspond to the Bragg re¯ ection of a mediumof period
selective re¯ ection within the grey regions. Three rē ection lb , when the optical path along one period is equal to a
bans are observed. Let us consider the instability regions half wavelength, despite the fact that here the period of
D 1 and D 2 . For our analysis it is convenient to take the the superstructure is di� erent. If lb is in the visible range,
usual de® nition of the slab thickness lb , and the pitch p this property allows us to obtain the value of the slab
(or pseudo-pitch when the ratio 2p/DQ is not an integer, thickness by an optical method. However, the ¯ uctuations
cf. the following section) of the TGB structures [4, 5] of the lb value which exist at any equilibrium state,
as: within the TGB structures, can seriously destroy this

interference pattern.
Figure 4(c) represents a 2D-surface plot of the trans-lb =

l

2pnÄ
w and p =

2p
DQ

lb (14)
mission intensity between parallel polarizers as a function
of w and DQ. A very large range of the pitch values iswhere nÄ = (ne +no )/2 is the mean refractive index. With
obtained, and for DQ< 0.13w, p is greater than 10mm.these de® nitions, it is easy to see that the ® rst unstable
In these long pitch regions, the polarization follows theband D 1 of ® gure 3 occurs when DQ/w = l/(nÄ p)# 1, which
orientation of the slab director: we are in the Mauguincorresponds to the Bragg re¯ ection. In fact in the limits
limit. The observed zero-transmittance corresponds thenDQ � 0 and w � 0, a uniform rotation of the optic axis
to a s-polarized output wave. This limit is obviouslyis realized and the considered instability region of the
present in the cholesteric phase which is found byTGBA phase corresponds to the well known Bragg
assuming the parameters of the TGBA phase, DQ and w,re¯ ection band in cholesterics.
to be close to zero [19].The angle DQ is de® ned modulus p, since it gives the

In our analysis, the TGBA structures are con-direction of the optic axis of the slab. It follows that we
sidered to be a discrete packing of homogeneous slabs.obtain an in® nite number of instability regions in the
Further, one of the most important problems which hasDQ direction. With this condition, the second re¯ ection
to be solved is connected with the commensurability ofband D 2 corresponds also to the ® rst order Bragg
the medium: i.e. to what extent an optical analysis cancondition, but it describes the optical properties of a left
di� erentiate the commensurable and the incommensurablecircular helix (DQ< 0) if the previous structure was right
structures of the phase. By setting the rotation anglehanded (DQ> 0). These properties are con® rmed in
to DQ=2p/a, three cases can be distinguished: (a) a is® gures 4 (a) and 4 (b) where a 2D-surface plot of the
an integer, (b) a is rational, (c) a is irrational. Thetransmittance for a dextrogyre (right) and levogyre (left)
medium is commensurable in the ® rst two cases while itincident polarization is given, respectively. The intensity
is incommensurable in the last case. It follows obviouslyis represented with a brightness scale (black and white
that the period of the system is alb for (a), greater thancorresponding to intensity values of 0 and 1, respectively)
alb for (b) and in® nite for (c). The re¯ ection bands ofas a function of w and DQ, for a monochromatic wave

(l=0.6328mm), and the sample data d=10mm, p=0.3mm, our system should follow this variation of the pitch.

Figure 3. Chart of stability on one
slab at normal incidence as a
function of the parameters of
the TGBA phase DQ and w
(ne =3 and no =2). The white,
gray and black regions corre-
spond to 4, 2, and 0 propagating
waves.
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1383Optical Bragg re¯ ection from T GBA phase

Figure 4. Transmission for (a) a left, (b) a right circular polarization of the incident light, and (c) intensity of the pp transmission
of a normally linear incident wave as a function of DQ, w (ne =1.66, no =1.5, l=0.6328mm and d =10mm). The brightness
scale is related to the intensity value of the transmittance which is equal to 1 and 0 for white and black, respectively.

However, the chart of stability obtained over one slab is the periodicity of the system remains the same. On the
a continuous function of the TGB parameters. This means other hand, some great changes happen in the rotation
that the position of the re¯ ection band and the actual of the transmitted beam which is elliptically polarized.
period of the medium are fully unrelated quantities. This In a ® rst approximation, the variation of the rotation
point can be explained by the fact that the re¯ ection angle with dQ is just given by NdQ (where N is the number
band is found by making use of a rotating reference of TGB blocks in the sample). This DQ-sensibility is
frame, as usual for helical structures. The imaginary part present for any choice of DQ0 . Moreover, ever more
of the wave vector, giving the instability, is then obtained critical e� ects are observed when the rotation angle DQ0

for a medium which in any case appears periodic with increases. Figures 5 (c), and 5(d) show the re¯ ection
the period p = 2plb /DQ= alb . The mediumis then de® ned spectra and the optical rotation for DQ0 = 90ß . For the
with a true period in the (a) case and with a pseudo- S1-structure, the optical axis of each slab is orthogonal
period in cases (b) and (c). This means that we cannot to the next and the transmitted polarization is always
predict the incommensurable properties of the TGB linear, while for the S2-structure the polarizationproperties
phases directly by analysing the instabilities of one slab can be quasi-circular at the Bragg peak. This last e� ect is
at normal incidence. independent of the sample thickness, because the output

In the laboratory frame, the real part of the wave polarization is strongly depolarized. However, for smaller
vector and the corresponding eigen vector are modi® ed DQ angles, this e� ect becomes more observable as the
when a variation of the TGB parameters occurs. This thickness increases, as expected.
suggests that we can ® nd some other optical properties
which in particular are sensible to a small DQ variation.

4. TGBA phases at oblique incidenceThis is shown in ® gures 5(a) and 5(b) which present the
The analysis made in §3 is not allowed for obliquere¯ ection spectra and the optical rotation, respectively,

incidence, because all the transfer matrices Un of oneof two closed structures: the S1-structure with DQ=
slab are not equal. Then, it is no longer possible simplyDQ0 = 18ß and the S2-structure with DQ= DQ0 +dQ with
to have the transfer matrices for the whole sample U

b
dQ# 0.03ß . The slight change in the rotation angle DQ
does not change the Bragg peak position, meaning that as a power of the matrix U1 as in equation (11).
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1384 P. Hubert

Figure 5. (a, c) pp re¯ ectance and
(b, d) rotation angle of the
main axis of the output polar-
ization as a function of p/l
with ne =1.66, no =1.5 and
p =0.3mm. Full line elates to
the S1-structure (DQ=DQ0 ) and
dashed line to the S2-structure
(DQ=DQ0 +dQ). For (a) and
(b), DQ0 =18ß , dQ# 0.03ß and
sample thickness d =100p; for
(c) and (d), DQ0 =90ß , dQ# 0.03ß
and d =50p.

Moreover, an analytical solution of the characteristic where a0 = (eo +ee )/2, a1 = (ee Õ eo )/2, b0 = ao Õ p2
0 ,

equation of U
b

at oblique incidence does not actually b1 2 = 1 Õ p2
0 eÕ

1
o , p0 = ng sin hg (ng , hg are the refractive

exist unfortunately, and we have to solve it numerically. index and the incident angle within the isotropic
Let us consider a dielectric tensor which describes a medium, respectively) and Qn is the azimuthal orientation

local uniaxial medium with the optic axis orthogonal to of the optic axis within the n-slab. We recall that this
the helix axis. With no limiting assumption that the method is the one used to describe a cholesteric phase
incident beam must be in the xy-plane, the Berreman where eo and ee are the local ordinary and extraordinary
matrix for the n slab of thickness lb becomes dielectric constants, respectively. If N is the number of

slabs within the whole sample, by following equation (2)
the transfer matrix U

b
is

Bn(Qn)= C 0 b1 2 0 0

a0 +a1 cos 2Qn 0 a1 sin 2Qn 0

0 0 0 1

a1 sin 2Qn 0 b0 Õ a1 cos 2Qn 0
D U

b
= a

N

n= 1
exp[ik0 Bn(Qn)lb ]. (16)

For the incommensurate structure a true period of the
medium does not exist and the computation is rather(15)
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1385Optical Bragg re¯ ection from T GBA phase

long because it must be done with the N slabs of the 5. Conclusions
In this paper, we have studied some optical propertiessample. Further, we will only consider true periodic

of the TGBA phase at normal and oblique incidencestructures (commensurable) in which the transfer matrix
by analysing the instabilities of the progagating wavescan be evaluated over one pitch containing N p slabs.
and the re¯ ection bands. The homeotropic geometry isFigure 6 shows some charts of stability constructed
described and the Berreman 4 Ö 4 matrix approach isnumerically for the TGBA phase at oblique incidence.
used. For a normally incident beam, the transfer matrixThey are represented as a function p/l and p2

0 , for
and the secular equation for one slab of the TGBAdi� erent rotation angles DQ= 2p/N p with N p = 20(a),
structures are found analytically. The discussion of the4(b), 3(c) and the same parameters as in ® gure 3. Beside
commensurable properties of these structures is a falsethe chart of stability, we show the rotation h of the
debate since no links have been established betweenmain axis of the output polarization for an incidence
the true period of the medium and the re¯ ection bandangle of 45ß . For small values of the rotation angle DQ
patterns. However, with a ® ne analysis of the Bragg[cf. ® gure 6(a)], our simulations give similar charts of
peak in the visible range, we can obtain the structuralstability to those obtained for cholesterics [16], as
parameters of the TGBA phase. This determination isexpected. They show all types of instability within the allowed for large pitch and rotation angle. However,re¯ ection band as the total and the Bragg re¯ ection. that case it is not yet compatible with the actual para-

Further, it can be seen that all the re¯ ection bands of meters of the TGBA compounds. For a short period, only
order higher than one disappear when the incidence the pitch value and the birefringence can be obtained
angle goes to zero. This agrees with the well known because the block size is too small to be seen optically.
result which allows only one single band re¯ ection at For oblique incidence, the 4 Ö 4 matrix numerical
normal incidence for cholesterics. Since the p/l range in approach is enough to ® nd all kinds of instabilities of
® gure 6(a) corresponds to w< p/2, only one of the bands the propagating waves in the sample. We then described
given in ® gure 3 appears. As the rotation angle DQ the chart of stability obtained in terms of Bragg and
increases, ® gures 6(b) and 6(c), the w range increases total re¯ ection bands. The general properties of the
and a second re¯ ection band appears. This band corre- TGBA phase are very similar to those of the cholesteric
sponds to another inversion of the optical rotation and phase when the parameters DQ and w go to zero. The
can consequently correspond to the Bragg condition. principal optical di� erence appears when DQ and w
This property has the same origin as the multiple Bragg increase: the Bragg re¯ ection pattern reoccurs an in® nite
peak of order one shown previously and is therefore due numbers of times due to the periodic de® nition of the

parameters of the TGBA phase.to the periodical properties of our system.

Figure 6. Chart of stability for the TGBA phase as a function of p2
0 and p/l (left side), and of rotation angle h for an incidence

of 45ß as a function of p/l (right side) with p =0.3mm, d =10p and N p =20, 4, 3 for (a), (b) and (c), respectively.
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